男女免费观看在线爽爽爽视频-精品无码一区二区三区水蜜桃-激情欧美成人-亚洲国产成人91精品-18黄暴禁片在线观看-性高潮在线观看-中文字幕久久综合伊人-在线观看免费av片-二区三区视频-久操视频免费-蜜桃久久精品-久久久久无码国产精品一区-男人女人午夜视频免费-日韩特黄-91在线观看

泰河盛電子
Dong TaiHe Electronic

設置首頁 添加收藏 網站地圖
咨詢熱線:0755-27872782
分享到:
聯系泰河盛電子電話: 0755-27872782手機: 138 2430 6246Q Q: 794113422立即咨詢郵箱: taiheth@163.com
首頁晶振常見問題 Application note on quartz crystal oscillator

Application note on quartz crystal oscillator

來源:http://m.cuifesek.cn 作者:泰河電子晶振 2019年07月24
  The purpose of these application notes is to help customers in specifying Clock Oscillators. Background information about the type of Oscillators offered by ECS is included along with some common definitions and helpful formulas. The ECS Oscillator product line consists of Clock Oscillators, TCXOs,VCXOs, VCTCXOs and VCOs.
  Clock Oscillator:  The standard clock oscillator is the most common type of oscillator used and has applications in virtually every aspect of the electronics industry. The clock oscillator is used to establish a reference frequency used for timing purposes. A typical application is the sequencing of events in a computer.
A crystal controlled clock oscillator typically consists of an amplifier and a feedback network that selects a part of the amplifier output and returns it to the amplifier input. A simplified block diagram of such a circuit is shown below in (Fig 1).
 
Figure 1) Simplified Block Diagram of a Crystal Controlled Clock Oscillator 
  The basic criteria for oscillation in an oscillator are: 1. The open loop gain must be greater than the losses around the oscillator loop and 2. The phase shift around the oscillator loop must be either 0 or 360 degrees.
  An oscillator can be used to generate different types of waveforms. The most common types of waveforms produced by an oscillator are sinusoidal and square.
The Main parameters used in specifying a clock oscillator are listed below.
  Logic TTL, HCMOS: In general, an HCMOS oscillator with drive TTL circuitry (not vice versa). The industry is moving away from the TTL logic as IC manufacturers are discontinuing the supply for many common TTL IC's. Most ECS clock oscillators are HCMOS/ TTL compatible.
  Frequency Stability: The most common stabilities are 25, 50 and 100 PPM. Overall stability usually includes accuracy at 25°C, effects due to changes in operating temperature, input voltage, aging, shock and vibration. The ± 100PPM stability has been the most popular as it is sufficient to run microprocessors. The Telecommunications industry has been moving toward tighter and tighter stabilities. Stabilities beyond ± 100PPM are no longer offered in commercial (0-70°C) applications, since standard process controls achieve this stability as a minimum. Requesting 50 PPM is usually a little more expensive. Clock oscillators requiring 25 PPM can significantly affect the price. For tighter than 25 PPM stability applications, please consult the factory or consider a TCXO.
TCXOs (Temperature Compensated Crystal Oscillators)
  Typically consist of tight tolerance quartz crystal, a temperature compensation network, an oscillator circuit and a variety of buffer and/or output stages determined by the output requirement. The crystal has a characteristic of changing frequency when a capacitor is inserted in series with the crystal unit as shown in (Fig. 2)
 
Figure 2) Load Capacitance Characteristics of Crystal Unit
  Utilizing the above characteristics, frequency can be stabilized by inserting a temperature compensation circuit consisting of thermistors, resistors and capacitors in the oscillation look as shown in (Fig. 3). The temperature compensation network is used to sense the ambient temperature and “pull” the crystal frequency in a manner which reduces frequency vs. temperature effect of the quartz crystal. 
 
Figure 3) Temperature Compensation Circuit
  A TCXO is generally required when overall stability needs are greater than those of a clock oscillator.Also, the long-term aging effects of a TCXO are better than those of most clock oscillators.
  Input Voltage:  Most TCXOs are designed to operate at 5VDC, 3.3 VDC or a combination of both.
  RF Output: A TCXO can be manufactured with various types of outputs: sine wave, clipped sine wave,TTL, HCMOS and ECL. Be sure to specify the desired output type, signal requirements and the load that the oscillator will be driving.TCXOs also have a frequency adjustment feature which allow for readjustment of the oscillator to its center frequency to compensate for aging. This adjustment can be provided in the following ways.
 1) A mechanical adjustment (internal trimmer) within the oscillator accessible via hole in the enclosure.
 2) An electrical adjustment via a lead in the enclosure for either a remotely located potentiometer or a voltage. An oscillator using this technique is called a Temperature Compensated Voltage Controlled Crystal Oscillator or TCVCXO.
 3) A combination of both mechanical and electrical adjustment.
  VCXOs (Voltage Controlled Crystal Oscillator) are crystals controlled oscillators in which the output frequency can be adjusted by varying the external control voltage across a variable capacitor ( varactor diode) within the oscillator circuit. The associated change in frequency due to the change in control voltage is known as pullability. VCXOs are used widely in telecommunications, instrumentation and other electronic equipment where a stable but electrically tunable oscillator is required.
  The varactor diode is a semiconductor device that is designed to act as a variable capacitor when a voltage is applied to it. When used in series with crystal , as shown in (Fig. 4), changing the control voltage causes diode capacitance to change. This change in capacitance causes the total crystal load capacitance to change and subsequently causes a change in crystal frequency. 
 
Figure 4) Typical VCXO Circuit
  Due to the growing applications of VCXOs in digital data transmissions phase jitter (short-term stability) has become an important consideration. Phase jitter provides a precise way to establish when a phase transition occurs.
 Definitions: The following definitions will aid you in understanding oscillator performance and terminology.
 Nominal Frequency:  The center or nominal output of a crystal oscillator.
 Frequency Tolerance: The deviation from the nominal frequency in terms of parts per million (PPM) at room temperature. (25°C ± 5°C)
 Frequency Range:  The frequency band that the oscillator type or model can be offered.
 Frequency Stability:The maximum allowable frequency deviation compared to the measured frequency at 25°C over the temperature window, ie 0°C to +70°C. The typical stability for clock oscillators is ±0.01% (±100PPM).
 Operating Temperature:  Temperature range within which output frequency and other electrical,environmental characteristics meet the specifications.
 Aging: The relative frequency change over a certain period of time. Typically aging for clock oscillators is ±5PPM over 1 year maximum.
 Storage Temperature:  The temperature range within which the unit is safely stored without damaging or changing the performance of the unit.
 Supply Voltage:  The maximum voltage which can safely be applied to the VCC terminal with respect to ground.
 Input Voltage (VIN):  The maximum voltage which can be safely applied to any input terminal of the oscillator.
 Output HIGH Voltage (VOH): The minimum voltage at an output of the oscillator under proper loading.
 Output LOW Voltage (VIH):  The maximum voltage to guarantee threshold trigger at the input of the oscillator.
 Supply Current:  The Current flowing into Vcc terminal with respect to ground. Typically supply current is measured without load.
 Symmetry of Duty Cycle:  The symmetry of the output waveform at the specified level (at 1.4 V for TTL, at 1/2 Vcc for HCMOS, or 1/2 waveform peak level for ECL).
 Rise Time (TR): Waveform rise time from Low to High transition measured at the specified level (20% to 80% for HCMOS, ECL and 0.4 V to 2.4 V for TTL).
 Fall Time (TF):  The waveform fall time from High to Low transition, measured at the specified level (80% to 20% for the HCMOS, ECL and 2.4 V to 0.4 V for TTL).
 Load/Fan Out:  The maximum load that the different families of oscillators can drive is defined as the output load driving capability. The load driving capability (fan-out) of each family of oscillators is specified in terms of the number of gates an oscillator can drive.
 Jitter (short-term stability):  The modulation in phase or frequency of the oscillator output.
 HCMOS/TTL Compatible: The oscillator is designed with ACMOS logic with driving capability of TTL and HCMOS loads while maintaining minimum logic High of HCMOS.
 Tri-State Enable:  When the input is left OPEN or tied to logic “1” the normal oscillation occurs. When the input is grounded (tied to logic “0”, the output is HIGH IMPEDANCE state. The input has an internal pull-up resistor thus allowing the input to be left open.
 Output Logic:  The output of an oscillator is designed to meet various specified logic's such as TTL,HCMOS, ECL, Sine, Clipped-Sine (DC cut).
 Harmonic Distortion: The non-linear distortion due to unwanted harmonic spectrum component related with target signal frequency. Each harmonic component is the ratio of electric power against desired signal output electric power and is expressed in terms of dbc, ie -20 dBc. Harmonic distortion specification is important especially in sine output when a clean and less distorted signal is required.
 Dual and Multiple Outputs: More than one signal is capable of being generated from a single oscillator.The signals may be related (usually a multiple or divisor of the signal produced by a single crystal).
 Start-Up Time:  The start up time of an oscillator is defined as the time an oscillator takes to reach its specified RF output amplitude.
正在載入評論數據...

發表評論:

姓名:
郵箱:
正文:

歡迎參與討論,請在這里發表您的看法、交流您的觀點。

此文關鍵字: OSCILLATORCRYSTALQUARTZ
誠征下列地區 晶振 | 石英晶振 | 圓柱晶振 | 貼片晶振 | 陶瓷晶振 | 石英晶體諧振器 | 頻率元件 的合作伙伴:
深圳市 廣州市 北京 上海 東莞 佛山 中山 順德 珠海 杭州 溫州 武漢 長沙 南京 大連 長春 西安 鄭州 澳門 沈陽 南寧 昆明 濟南 重慶 成都
客服

泰河盛電子

在線咨詢
close

咨詢熱線

0755-27872782

泰河微信號
泰河公眾號
主站蜘蛛池模板: 国产午夜片无码区在线观看 | 久久香蕉99 | 精品亚洲欧美自拍 | 最近中文字幕免费视频 | 自拍偷拍亚洲 | 色偷偷av亚洲男人的天堂 | 国产一级淫片免费 | 日本乱偷互换人妻中文字幕 | 嫩草精品 | 国产无线乱码一区二三区 | 欧美精品国产精品 | 精品成人在线观看 | 精品久久久久久无码中文野结衣 | 18禁无遮拦无码国产在线播放 | 日本wwww色 | 国产精品久久999 | 超碰人人模人人爽人人喊手机版 | 亚洲 欧美 日韩 国产 丝袜 | 中文字幕丰满人伦在线 | √8天堂资源地址中文在线 亚洲精品综合久久 | 99久久人妻精品免费二区 | 先锋av网 | 国产综合图片 | 欧美一区二区三区婷婷月色 | 少妇被黑人4p到惨叫欧美人 | 国产高清视频在线观看97 | 亚洲天堂手机 | 色在线网站 | 天天躁夜夜躁狠狠躁2020 | 成人试看30分钟免费视频 | 日韩精品无码久久久久久 | 欧美精品一区三区 | 中文字幕一区二区三区乱码在线 | 久久婷婷久久一区二区三区 | 正在播放东北夫妻内射 | 女人被强╳到高潮喷水在线观看 | 精品一区二区视频 | 久久久久久久久久亚洲精品 | 国产精品久久久久久99人妻精品 | 丰满无码人妻熟妇无码区 | 黑人巨大精品欧美黑白配亚洲 | 久久香蕉综合 | 69天堂网 | 免费成人深夜小野草 | 你懂的网址在线观看 | 婷婷色在线播放 | 99精品亚洲 | 日日干天天操 | 影音先锋一区 | 老子影院无码午夜伦不卡 | 国产99视频精品专区 | 午夜性生大片免费观看 | 国产精品久久免费 | 人妻熟女一区二区aⅴ水野朝阳 | 无码午夜福利视频一区 | 日本在线高清 | 久久99精品国产99久久6不卡 | 国产成人亚洲综合色就色 | 黄色片视频播放 | 国产麻豆成人传媒免费观看 | 精品视频一区二区在线观看 | 亚洲国产品综合人成综合网站 | 日韩成人高清视频 | 久久免费看少妇高潮av影视 | 99久久国产综合精品swag | 亚洲va中文字幕无码一二三区 | 97久久精品无码一区二区 | 麻豆人妻无码性色av专区 | 韩国午夜理论在线观看 | www日本免费 | 国产日韩欧美亚洲 | 人妻 校园 激情 另类 | 风流少妇按摩来高潮 | 国产精品呻吟久久 | 成人免费观看视频 | 久色伊人| 国产一区二区三区在线视频 | 私人午夜影院 | 亚洲国产精品一区二区成人片不卡 | 亚洲丁香色 | 2019天天干天天操 | 久久国产香蕉视频 | 视频区国产亚洲.欧美 | 欧美日韩在线精品视频二区 | 韩国性猛交╳xxx乱大交 | 在熟睡夫面前侵犯我在线播放 | 五 月 丁 香 综合中文 | 无码人妻一区二区三区免费n鬼逝 | 无码熟熟妇丰满人妻啪啪软件 | 国产va免费精品高清在线 | 又爆又大又粗又硬又黄的a片 | 亚洲欧美第一成人网站7777 | 人人看人人艹 | 亚洲精品久久久久久久观看 | 亚洲色欲色欲www在线丝 | 亚洲欧美在线人成最新 | 欧美一级特黄aaaaaa | 天天操天天操天天操天天 | 女性裸体无遮挡无遮掩视频蜜芽 |